1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309 | /*
This file is part of KDBindings.
SPDX-FileCopyrightText: 2021 Klarälvdalens Datakonsult AB, a KDAB Group company <info@kdab.com>
Author: Sean Harmer <sean.harmer@kdab.com>
SPDX-License-Identifier: MIT
Contact KDAB at <info@kdab.com> for commercial licensing options.
*/
#pragma once
#include <kdbindings/property.h>
#include <kdbindings/signal.h>
#include <functional>
#include <memory>
#include <stdexcept>
#include <type_traits>
#include <utility>
namespace KDBindings {
class PropertyDestroyedError : public std::runtime_error
{
public:
PropertyDestroyedError() = delete;
using std::runtime_error::runtime_error;
};
namespace Private {
class Dirtyable
{
public:
virtual ~Dirtyable() = default;
Dirtyable() = default;
void setParent(Dirtyable *newParent)
{
auto **parentVar = parentVariable();
if (parentVar) {
*parentVar = newParent;
}
}
// overridden by Binding
virtual void markDirty()
{
auto *dirtyVar = dirtyVariable();
if (dirtyVar) {
if (*dirtyVar) {
return;
// We are already dirty, don't bother marking the whole tree again.
}
// we only want to have one override for dirtyVariable,
// which is const, so we have to const cast here.
*const_cast<bool *>(dirtyVar) = true;
}
auto **parentVar = parentVariable();
if (parentVar && *parentVar) {
(*parentVar)->markDirty();
}
}
bool isDirty() const
{
auto *dirtyVar = dirtyVariable();
return dirtyVar && *dirtyVar;
}
protected:
virtual Dirtyable **parentVariable() = 0;
virtual const bool *dirtyVariable() const = 0;
};
template<typename ResultType>
class NodeInterface : public Dirtyable
{
public:
// Returns a reference, because we cache each evaluated value.
// const, because it shouldn't modify the return value of the AST.
// Requires mutable caches
virtual const ResultType &evaluate() const = 0;
protected:
NodeInterface() = default;
};
template<typename ResultType>
class Node
{
public:
Node(std::unique_ptr<NodeInterface<ResultType>> &&nodeInterface)
: m_interface(std::move(nodeInterface))
{
}
const ResultType &evaluate() const
{
return m_interface->evaluate();
}
void setParent(Dirtyable *newParent)
{
m_interface->setParent(newParent);
}
bool isDirty() const
{
return m_interface->isDirty();
}
private:
std::unique_ptr<NodeInterface<ResultType>> m_interface;
};
template<typename T>
class ConstantNode : public NodeInterface<T>
{
public:
explicit ConstantNode(const T &value)
: m_value{ value }
{
}
const T &evaluate() const override
{
return m_value;
}
protected:
// A constant can never be dirty, so it doesn't need to
// know its parent, as it doesn't have to notify it.
Dirtyable **parentVariable() override { return nullptr; }
const bool *dirtyVariable() const override { return nullptr; }
private:
T m_value;
};
template<typename PropertyType>
class PropertyNode : public NodeInterface<PropertyType>
{
public:
explicit PropertyNode(Property<PropertyType> &property)
: m_parent(nullptr), m_dirty(false)
{
setProperty(property);
}
// PropertyNodes cannot be moved
PropertyNode(PropertyNode<PropertyType> &&) = delete;
PropertyNode(const PropertyNode<PropertyType> &other)
: Dirtyable(other.isDirty())
{
setProperty(*other.m_property);
}
virtual ~PropertyNode()
{
m_valueChangedHandle.disconnect();
m_movedHandle.disconnect();
m_destroyedHandle.disconnect();
}
const PropertyType &evaluate() const override
{
if (!m_property) {
throw PropertyDestroyedError("The Property this node refers to no longer exists!");
}
m_dirty = false;
return m_property->get();
}
// This must currently take a const reference, as the "moved" signal emits a const&
void propertyMoved(Property<PropertyType> &property)
{
if (&property != m_property) {
m_property = &property;
} else {
// Another property was moved into the property this node refers to.
// Therefore it will no longer update this Node.
m_property = nullptr;
}
}
void propertyDestroyed()
{
m_property = nullptr;
}
protected:
Dirtyable **parentVariable() override { return &m_parent; }
const bool *dirtyVariable() const override { return &m_dirty; }
private:
void setProperty(Property<PropertyType> &property)
{
m_property = &property;
m_valueChangedHandle = m_property->valueChanged().connect(&PropertyNode<PropertyType>::markDirty, this);
m_movedHandle = m_property->m_moved.connect(&PropertyNode<PropertyType>::propertyMoved, this);
m_destroyedHandle = m_property->destroyed().connect(&PropertyNode<PropertyType>::propertyDestroyed, this);
}
Property<PropertyType> *m_property;
ConnectionHandle m_movedHandle;
ConnectionHandle m_valueChangedHandle;
ConnectionHandle m_destroyedHandle;
Dirtyable *m_parent;
mutable bool m_dirty;
};
template<typename ResultType, typename Operator, typename... Ts>
class OperatorNode : public NodeInterface<ResultType>
{
public:
// add another typename template for the Operator type, so
// it can be a universal reference.
template<typename Op>
explicit OperatorNode(Op &&op, Node<Ts> &&...arguments)
: m_parent{ nullptr }, m_dirty{ true /*dirty until reevaluated*/ }, m_op{ std::move(op) }, m_values{ std::move(arguments)... }, m_result(reevaluate())
{
static_assert(
std::is_convertible_v<decltype(m_op(std::declval<Ts>()...)), ResultType>,
"The result of the Operator must be convertible to the ReturnType of the Node");
setParents<0>();
}
template<std::size_t I>
auto setParents() -> std::enable_if_t<I == sizeof...(Ts)>
{
}
// The enable_if_t confuses clang-format into thinking the
// first "<" is a comparison, and not the second.
// clang-format off
template<std::size_t I>
auto setParents() -> std::enable_if_t<I < sizeof...(Ts)>
// clang-format on
{
std::get<I>(m_values).setParent(this);
setParents<I + 1>();
}
virtual ~OperatorNode() = default;
const ResultType &evaluate() const override
{
if (Dirtyable::isDirty()) {
m_result = reevaluate();
}
return m_result;
}
protected:
Dirtyable **parentVariable() override { return &m_parent; }
const bool *dirtyVariable() const override { return &m_dirty; }
private:
template<std::size_t... Is>
ResultType reevaluate_helper(std::index_sequence<Is...>) const
{
return m_op(std::get<Is>(m_values).evaluate()...);
}
ResultType reevaluate() const
{
m_dirty = false;
return reevaluate_helper(std::make_index_sequence<sizeof...(Ts)>());
}
Dirtyable *m_parent;
mutable bool m_dirty;
Operator m_op;
std::tuple<Node<Ts>...> m_values;
// Note: it is important that m_result is evaluated last!
// Otherwise the call to reevaluate in the constructor will fail.
mutable ResultType m_result;
};
template<typename T>
struct is_node_helper : std::false_type {
};
template<typename T>
struct is_node_helper<Node<T>> : std::true_type {
};
template<typename T>
struct is_node : is_node_helper<T> {
};
} // namespace Private
} // namespace KDBindings
|