KD Chart 2 [rev.2.4]

KDChartPercentPlotter_p.cpp

Go to the documentation of this file.
00001 /****************************************************************************
00002 ** Copyright (C) 2001-2012 Klaralvdalens Datakonsult AB.  All rights reserved.
00003 **
00004 ** This file is part of the KD Chart library.
00005 **
00006 ** Licensees holding valid commercial KD Chart licenses may use this file in
00007 ** accordance with the KD Chart Commercial License Agreement provided with
00008 ** the Software.
00009 **
00010 **
00011 ** This file may be distributed and/or modified under the terms of the
00012 ** GNU General Public License version 2 and version 3 as published by the
00013 ** Free Software Foundation and appearing in the file LICENSE.GPL.txt included.
00014 **
00015 ** This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
00016 ** WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
00017 **
00018 ** Contact info@kdab.com if any conditions of this licensing are not
00019 ** clear to you.
00020 **
00021 **********************************************************************/
00022 
00023 #include "KDChartPercentPlotter_p.h"
00024 #include "KDChartPlotter.h"
00025 
00026 #include <limits>
00027 
00028 using namespace KDChart;
00029 using namespace std;
00030 
00031 PercentPlotter::PercentPlotter( Plotter* d )
00032     : PlotterType( d )
00033 {
00034 }
00035 
00036 Plotter::PlotType PercentPlotter::type() const
00037 {
00038     return Plotter::Percent;
00039 }
00040 
00041 const QPair< QPointF, QPointF > PercentPlotter::calculateDataBoundaries() const
00042 {
00043     const int rowCount = compressor().modelDataRows();
00044     const int colCount = compressor().modelDataColumns();
00045     double xMin = std::numeric_limits< double >::quiet_NaN();
00046     double xMax = std::numeric_limits< double >::quiet_NaN();
00047     const double yMin = 0.0;
00048     const double yMax = 100.0;
00049 
00050     for( int column = 0; column < colCount; ++column )
00051     {
00052         for ( int row = 0; row < rowCount; ++row )
00053         {
00054             const CartesianDiagramDataCompressor::CachePosition position( row, column );
00055             const CartesianDiagramDataCompressor::DataPoint point = compressor().data( position );
00056 
00057             const double valueX = ISNAN( point.key ) ? 0.0 : point.key;
00058 
00059             if( ISNAN( xMin ) )
00060             {
00061                 xMin = valueX;
00062                 xMax = valueX;
00063             }
00064             else
00065             {
00066                 xMin = qMin( xMin, valueX );
00067                 xMax = qMax( xMax, valueX );
00068             }
00069         }
00070     }
00071 
00072     // NOTE: calculateDataBoundaries must return the *real* data boundaries!
00073     //       i.e. we may NOT fake yMin to be qMin( 0.0, yMin )
00074     //       (khz, 2008-01-24)
00075     const QPointF bottomLeft( QPointF( xMin, yMin ) );
00076     const QPointF topRight( QPointF( xMax, yMax ) );
00077     return QPair< QPointF, QPointF >( bottomLeft, topRight );
00078 }
00079 
00080 class Value
00081 {
00082 public:
00083     Value()
00084         : value( std::numeric_limits< double >::quiet_NaN() )
00085     {
00086     }
00087     // allow implicit conversion
00088     Value( double value )
00089         : value( value )
00090     {
00091     }
00092     operator double() const
00093     {
00094         return value;
00095     }
00096 
00097 private:
00098     double value;
00099 };
00100 
00101 void PercentPlotter::paint( PaintContext* ctx )
00102 {
00103     reverseMapper().clear();
00104 
00105     Q_ASSERT( dynamic_cast< CartesianCoordinatePlane* >( ctx->coordinatePlane() ) );
00106     const CartesianCoordinatePlane* const plane = static_cast< CartesianCoordinatePlane* >( ctx->coordinatePlane() );
00107     const int colCount = compressor().modelDataColumns();
00108     const int rowCount = compressor().modelDataRows();
00109 
00110     if( colCount == 0 || rowCount == 0 )
00111         return;
00112 
00113     DataValueTextInfoList textInfoList;
00114     LineAttributes::MissingValuesPolicy policy = LineAttributes::MissingValuesAreBridged; // ???
00115 
00116     // this map contains the y-values to each x-value
00117     QMap< double, QVector< QPair< Value, QModelIndex > > > diagramValues;
00118 
00119     for( int col = 0; col < colCount; ++col )
00120     {
00121         for( int row = 0; row < rowCount; ++row )
00122         {
00123             const CartesianDiagramDataCompressor::CachePosition position( row, col );
00124             const CartesianDiagramDataCompressor::DataPoint point = compressor().data( position );
00125             diagramValues[ point.key ].resize( colCount );
00126             diagramValues[ point.key ][ col ].first = point.value;
00127             diagramValues[ point.key ][ col ].second = point.index;
00128         }
00129     }
00130 
00131     // the sums of the y-values per x-value
00132     QMap< double, double > yValueSums;
00133     // the x-values
00134     QList< double > xValues = diagramValues.keys();
00135     // make sure it's sorted
00136     qSort( xValues );
00137     Q_FOREACH( const double xValue, xValues )
00138     {
00139         // the y-values to the current x-value
00140         QVector< QPair< Value, QModelIndex > >& yValues = diagramValues[ xValue ];
00141         Q_ASSERT( yValues.count() == colCount );
00142 
00143         for( int column = 0; column < colCount; ++column )
00144         {
00145             QPair< Value, QModelIndex >& data = yValues[ column ];
00146             // if the index is invalid, there was no value. Let's interpolate.
00147             if( !data.second.isValid() )
00148             {
00149                 QPair< QPair< double, Value >, QModelIndex > left;
00150                 QPair< QPair< double, Value >, QModelIndex > right;
00151                 int xIndex = 0;
00152                 // let's find the next lower value
00153                 for( xIndex = xValues.indexOf( xValue ); xIndex >= 0; --xIndex )
00154                 {
00155                     if( diagramValues[ xValues[ xIndex ] ][ column ].second.isValid() )
00156                     {
00157                         left.first.first = xValues[ xIndex ];
00158                         left.first.second = diagramValues[ left.first.first ][ column ].first;
00159                         left.second = diagramValues[ xValues[ xIndex ] ][ column ].second;
00160                         break;
00161                     }
00162                 }
00163                 // let's find the next higher value
00164                 for( xIndex = xValues.indexOf( xValue ); xIndex < xValues.count(); ++xIndex )
00165                 {
00166                     if( diagramValues[ xValues[ xIndex ] ][ column ].second.isValid() )
00167                     {
00168                         right.first.first = xValues[ xIndex ];
00169                         right.first.second = diagramValues[ right.first.first ][ column ].first;
00170                         right.second = diagramValues[ xValues[ xIndex ] ][ column ].second;
00171                         break;
00172                     }
00173                 }
00174 
00175                 // interpolate out of them (left and/or right might be invalid, but this doesn't matter here)
00176                 const double leftX = left.first.first;
00177                 const double rightX = right.first.first;
00178                 const double leftY = left.first.second;
00179                 const double rightY = right.first.second;
00180 
00181                 data.first = leftY + ( rightY - leftY ) * ( xValue - leftX ) / ( rightX - leftX );
00182                 // if the result is a valid value, let's assign the index, too
00183                 if( !ISNAN( data.first.operator double() ) )
00184                     data.second = left.second;
00185             }
00186 
00187             // sum it up
00188             if( !ISNAN( yValues[ column ].first.operator double() ) )
00189                 yValueSums[ xValue ] += yValues[ column ].first;
00190         }
00191     }
00192 
00193     for( int column = 0; column < colCount; ++column )
00194     {
00195         LineAttributesInfoList lineList;
00196         LineAttributes laPreviousCell;
00197         CartesianDiagramDataCompressor::CachePosition previousCellPosition;
00198 
00199         CartesianDiagramDataCompressor::DataPoint lastPoint;
00200 
00201         qreal lastExtraY = 0.0;
00202         qreal lastValue = 0.0;
00203 
00204         QMapIterator< double, QVector< QPair< Value, QModelIndex > > >  i( diagramValues );
00205         while( i.hasNext() )
00206         {
00207             i.next();
00208             CartesianDiagramDataCompressor::DataPoint point;
00209             point.key = i.key();
00210             const QPair< Value, QModelIndex >& data = i.value().at( column );
00211             point.value = data.first;
00212             point.index = data.second;
00213 
00214             if( ISNAN( point.key ) || ISNAN( point.value ) )
00215             {
00216                 previousCellPosition = CartesianDiagramDataCompressor::CachePosition();
00217                 continue;
00218             }
00219 
00220             double extraY = 0.0;
00221             for( int col = column - 1; col >= 0; --col )
00222             {
00223                 const double y = i.value().at( col ).first;
00224                 if( !ISNAN( y ) )
00225                     extraY += y;
00226             }
00227 
00228             LineAttributes laCell;
00229 
00230             const qreal value = ( point.value + extraY ) / yValueSums[ i.key() ] * 100;
00231 
00232             const QModelIndex sourceIndex = attributesModel()->mapToSource( point.index );
00233             // area corners, a + b are the line ends:
00234             const QPointF a( plane->translate( QPointF( lastPoint.key, lastValue ) ) );
00235             const QPointF b( plane->translate( QPointF( point.key, value ) ) );
00236             const QPointF c( plane->translate( QPointF( lastPoint.key, lastExtraY / yValueSums[ i.key() ] * 100 ) ) );
00237             const QPointF d( plane->translate( QPointF( point.key, extraY / yValueSums[ i.key() ] * 100 ) ) );
00238             // add the line to the list:
00239             laCell = diagram()->lineAttributes( sourceIndex );
00240             // add data point labels:
00241             const PositionPoints pts = PositionPoints( b, a, d, c );
00242             // if necessary, add the area to the area list:
00243             QList<QPolygonF> areas;
00244             if ( laCell.displayArea() ) {
00245                 QPolygonF polygon;
00246                 polygon << a << b << d << c;
00247                 areas << polygon;
00248             }
00249             // add the pieces to painting if this is not hidden:
00250             if ( !point.hidden /*&& !ISNAN( lastPoint.key ) && !ISNAN( lastPoint.value ) */) {
00251                 appendDataValueTextInfoToList( diagram(), textInfoList, sourceIndex, pts,
00252                                                Position::NorthWest, Position::SouthWest,
00253                                                value );
00254                 if( !ISNAN( lastPoint.key ) && !ISNAN( lastPoint.value ) )
00255                 {
00256                     paintAreas( ctx, attributesModel()->mapToSource( lastPoint.index ), areas, laCell.transparency() );
00257                     lineList.append( LineAttributesInfo( sourceIndex, a, b ) );
00258                 }
00259             }
00260 
00261             // wrap it up:
00262             laPreviousCell = laCell;
00263             lastPoint = point;
00264             lastExtraY = extraY;
00265             lastValue = value;
00266         }
00267         paintElements( ctx, textInfoList, lineList, policy );
00268     }
00269 }
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Defines

Klarälvdalens Datakonsult AB (KDAB)
Qt-related services and products
http://www.kdab.com/
http://www.kdab.com/products/kd-chart/